How does it work?:

Input: A covered hopper with live-bottom augers keeps the biosolids moving, avoiding bridging and odors. An auger or progressive cavity pump conveys the biosolids to the dryer insuring a consistent feed rate and material uniformity.

Drying: The Bio-SCRU® dryer chamber is a jacketed housing with two, intermeshed, hollow-flight augers. Biosolids which indirectly heat the b in a hermetic environment at a slight negative pressure to contain the water vapors and odors. Thermal fluid circulating through the dryer’s metal augers and housing jacket provides indirect heat-transfer, keeping the heating medium separate from the biosolids, which avoids both cross-contamination and the need to treat large volumes of odorous flue gases or air. A multi-stage condenser system provides high-efficiency condensation of water vapor as well as capturing any particulates and soluble odorous gases.

Cooling: A water-cooled conveyor reduces the temperature of the dried biosolids for safe storage and handling.

Ongoing Support:

BCR’s service agreement includes remote monitoring of operations with operational and maintenance alerts as well as monthly reports with key unit ratios (utility consumption etc.).

We also provide quarterly reports, inspections, training and program upgrades.

Requirements:

Footprint: Compact design means the largest Bio-SCRU® dryer has a footprint of approximately 47 ft. by 9 ft. The smallest is less than half that size.

Energy Source: The Bio-SCRU® thermal fluid heater can be powered by a variety of energy sources including natural gas, bio-gas, LPG, diesel, fuel oil or electricity.